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Abstract

A finite element model was developed to solve
for the acoustic pressure field in a nonhomogeneous
region. The derivations from the governing equa-
tions assumed that the material properties could
vary with position resuiting in a nonhomogeneous
variable property two-dimensional wave equation.
This eliminated the necessity of finding the bound-
ary conditions between the different materials.

For a two media region consisting of part air (in
the duct) and part bulk absorber (in the wall), a
model was used to describe the bulk absorber proper-
ties in two directions. An experiment to verify
the numerical theory was conducted in a rectangular
duct with no flow and absorbing material mounted on
one wall. Changes in the sound field, consisting
of planar waves was measured on the wall opposite
the absorbing material. As a function of distance
along the duct, fairly good agreement was found in
the standing wave pattern upstream of the absorber
and in the decay of pressure level opposite

the absorber.

Nomenclature

A ampliitude

Ad mode amplitude of plus going entrance
waves, Eq. (32)

A mode amplitude of reflected negative
going entrance waves, Eq. (32)

B} mode amplitude of plus going exit waves,
Eq. (36)

b' cbaracter1st1c duct height, chosen
ba

ba d?meqsionless entrance height,
by/b

bp dimensionless exit height bp/b'

Ce effective speed of sound, Eq. (9)

Co dimensionless speed of sound,4fYRTq,

Eq. (5), (co/coa = 1)

o speed of sound, \lyR'Té

d fiber diameter, d'/by

£ property tensor, Eq. (30)

f! frequency

1 E

K dimensjonless heat trgnsfer parameter,

K'ba/poaCoar EG. (20)

44135

wave number, Eq. (35)

axia) modal wave number, Eq. (33)
dimensionless length, L'/b,
non-dimensional parameter, Eq. (6)

non-dimensional parameters, Egs. (17
and (18)

mode number, Eq. (38)
number of modes

d1mens1on1e§s pressure,
P'(X,Y,t)/poaCol

Prandtl number

dimensionless pressure, P(x,y,t)/eWt
dimensionless gas constant, R'Tga/Co%
experimental constant?

dimensionless temperature, Té/Téa

dimensionless time, Eq. (1)

,d1meqsﬁon1ess axial acoustic velocity,

u'/copa

d1meqsion1ess transverse acoustic velocity,
v'/Cpa

dimensionless axial distance, Eq. (1)
dimensionless transverse distance, Eq. (1)
specific heat ratio

property constant, Eqs. (25) and (26)
porosity

property constant, Eq. (27)

fluid kinematic viscosity

dimensionless density, Eq. (2)(pq = 1)

djmgns?on]ess viscous loss coefficient,
o ba/ppatoa

viscous less coefficient, Eq. (13)%
dimensionless frequency, w'bs/Coa

angular velocity




Subscripts

a inlet duct condition

b exit duct condition

i 1th podal point

0 ambient conditions

X,y scalor vector components
Superscripts

! dimensional quantity
~ approximate finite element solution
introduction

The relatively high fuel economy available
from propeller-driven aircraft has renewed interest
in high speed, highly loaded, multiple blade turbo-
prop propulsion systems. The acoustic test1ng] of
a scaled multiple blade propeller has been carried
out in the 9- by 15-Ft Low Speed Wind Tunnel at NASA
Lewis Research Center. Under simulated flight con-
ditions in the wind tunnel, it is desirable to meas-
ure both acoustic amplitude and directivity to help
fully characterize the propeller noise source. This
is not possible if reflections from the wind tunnel
walls are interfering with the direct sound. Conse-
quently, the NASA bLewis 9- by 15-Ft Low Speed Wind
Tunnel was acoustically 1ined to reduce tunnel
reverberations.

At the same time as measurements were made in
the wind tunnel, analysis was done to provide data
on how the measurements were affected by various
acoustic parameters. 1In Ref. 2, Baumeister and
Eversman used finite element theory to calculate the
acoustic field of a propeller in a soft walled wind
tunnel and compared these results to the radiation
patterns of the same propeller in free space. They
found that complicated pressure fields exist in a
lined wind tunnel and that only over limited por-
tions of the tunnel can measurements approximating
the free field be obtained.

The hard Helmholtz resonator cavity and a bulk
fibrous absorber are the most common materials
employed to attenuate sound. A bulk absorber called
Keviar was chosen as the wall absorbing material in
the 9- by 15~ Ft NASA Lewis Wind Tunnel. Design
and construction of the wall liner was performed at
NASA Lewis and is documented in Ref. 3. 1In contrast
to a locally reacting liner, such as the Helmholtz
resonator shown in Fig. 1(a), the bulk extended
reaction liner permits wave propagation in the axtal
direction, as shown in Fig. 1(b).

In Ref. 2, the absorbing characteristics of the
wind tunnel walls were modeled by applying the clas-
sical admittance boundary conditions at the tunnel
walls. Consequently, wave propagation in the axial
direction in the bulk liner was not considered. The
present investigation will use finite element theory
to develop a model to conveniently handle wave prop-
agation in bulk material as well as in any inhomog-
eneous medium. The absorbing characteristics of the
bulk material used in this model rely on the theo-
retical development presented by Hersh.

First, the geometric model and the appropriate
governing equations and boundary conditions will be
presented. Next, the finite element procedure for
solving the problem will be discussed. Then, a
numerical solution and an analytical solution to a
test problem will be compared. Finally, the results
of a validation experiment will be discussed and
compared to theory.

Geometrical Model

In the finite element model of a tunnel with
bulk absorbing materials along the wall, the present
paper will focus on the interaction of propagating
duct modes with the wall lining as shown in Fig. 2.
In the uniform, infinitely long entrance and exit
regions with perfectly hard wall, the exact solution
of the governing differential equations can be
easily written in terms of the duct modes. In the
central region which includes both the duct and the
fibrous absorbing region, the finite element analy-
sis is employed to determine the ressure field in
this nonuniform region. Pressure waves propagating
down the duct are either reflected, transmitted or
absorbed by the nonuniform segment of the duct.

Pressure mode reflection at the inlet to the
absorbing region and transmission at the outlet of
the absorbing region are modeled by matching the
finite element solution in the interior of the cen-
tral region to the known analytical eigen function
expansions in the uniform inlet and outlet ducts.
This permits a multimodal representation accounting
for reflection and mode conversion by the nonuniform
absorbing section. This approach has been found to
accurately model reflection and transmission
coefficients.

Governing Equations

The governing equations are the state, continu-
ity, and momentum linearized gas dynamics equations
in the absence of a mean flow. In the fibrous mate-
rial, the Hersh form* of the governing equations
will be employed. By treating the bulk material as
a momentum and thermal sink, Hersh modified the con-
ventional linearized gas equation such that new
complex propagation constants would account for
acoustic energy absorption in the material. The
development was semi-empirical since an adjustable
constant was employed; however, the dimensional
parameters developed appear to accurately follow
experimental trends. Different sets of constants
were determined for the fibers oriented perpendicu-
lar to or parallel to the incident sound particle
velocity field. Consequently, some properties in
the following equation will be subscripted with
either x or y to indicate anisotropic behavior.

The Hersh model? was developed for acoustic
propagation in one dimension. Herein, the model
will be extended to two-dimensional propagation.

The differential equations used herein are put
in non-dimensional form form using

C 1 ]
t-t-22 X% y. ¥ (1)
ba ba ba
1 1 ]
pets T Pt (2)
Poa Toa p . C




In the foregoing equations, the prime, ', 1s used to
denote a dimensional quantity and the umprimed
defines a dimensionless quantity. This convention
will be used throughout this paper. These and all
other symbols used in the report are defined in the
Nomenclature. Generally, conventional acoustic
notation will be used so that the significance of
most symbols are readily recognized.

Equation of State

The equation relating acoustic pressure and
density used in the bulk absorber was derived in
Ref. 4 using a one-dimensional model for the heat
-transfer between the sound field and the fibers.

The heat transfer equation was used to determine a
relationship between temperature and density per-
turbations in the fluid surrounding the fibers.

This relationship and the linearized perfect gas

law yielded the following relationship between pres-
sure and density perturbations which are assumed to

hold in two-dimensions:
K
P/t 1Y

P(x,y,t) = RTg ( K )

Py

p(x,y,t) (3)

where the dimensionliess frequency o 1s defined as
Ibal
0 = 90 (4)
oa
The parameters K 1is defined in Ref. 4 as

Ko _ 4y v \} - 1
o Priwdr? ¢ Lt,n
d

{Eq. (21) Ref. 4} (5)

where

Lt n Tn

) 5.4\11 - Z1 + 3.94(1 - C)3]

& =
{Eq. (18b) Ref. 4} (6)

In Eqs. (3) and (5), the symbol K denotes a
heat transfer parameter that is connected to the
properties of the fluid medium and the fiber
material (Eq. (20)).%4

The two 1imiting cases of the state equation
correspond to the isothermal and adiabatic relation-
ships between the pressure P and density p. At
very low frequencies wherein K/pgw >> 1,

P(x,y,t) = RTgp(x,¥,t) (1)
which represents the isothermal relationship. At
very high frequencies, wherein K/pgw << 1,

P(x,y,t) = YRTop(x,Y¥,t) (8)
the adiabatic relationship is recovered. Further
interpretation of Eq. (3) can be found in Ref. 4.

For simplicity, in the general case as given by
Eq. (3), the effective speed of sound is now defined
as

KN, K\
p.w Y 21\ w Y
o/ |_¢c|Yte/ (9)
R ICoRl I (e
P Po®
Thus, the equation of state can now be written as
P(x,y,t) = cda(X,y,t)

Continuity Equation

(10)

The continuity equation in the bulk material
can be written as

ap(x,y) , fo au, Poav
ot *7 'z ay-"0 an
where ¢ represents the porosity of the medium. 1In
the main inlet channel without fibers, ¢ has a
value of unity. In the fibrous material ¢ 1is a
fraction less than one whose value depends on the
packing density of the material. 1In this continuity
equation, the particle mass flow is conserved where
the air (or any gas) density py 1is constant in the
medium and in the air gaps surrounding the fibers.

Substituting the equation of state, Eq. (10),
into Eq. (11) and taking the derivative with respect
to time yields

82u 32V + < a_z.E -0 (12)
atax = atay CZ at2 -
Poe
Momentum Equations
The x and y momentum equation can be
written as
P
o 3u __ap u
¢ at” " ax ¢ (13)
P
_0av _ -aP v
g at™ ey % ¢ ()

Here, the momentum equations have been empirically
modified with a viscous loss coefficient o

(Eq. 13, Ref. 4) resulting from skin friction,
shear stresses and drag.

%x 4y’ 'n
P ‘;TETE (1 -9 *Egzﬂ (15)
. (16)
pw w'd'? %!;2

where V, and V, are arbitrary constants

based on measurements and the parameters Lyv,n
and Ly p are those used in Ref. 4

L

v,Nn

1
d 1641 - ¢01 + 147500 - %)

{Eq. 12, Ref. 4} (17)
and
‘vop _ ' 1
¢ 30401 - 0230 2700 - %)
{Eq. 11. Ref. 4} (18)



This is an extension of the one-dimensional model
used in Ref. 4 which used a viscous loss coeffi-
cient corresponding to

o =oa {€Eq. 13, Ref. 4} (19)
The x momentum Eq. (13) can be rewritten in the
form
P o
0o 3 _ 3P x
¢ ot T T ax  fiw at (20)
where u has been assumed to be a harmonic function
of time. Thus,
u ____ -1 2P
at -~ (po Sy ax (21)
e )
Taking the x derivative of Eq. (21) yields
2
au _ af__ 1 2P
axat ~ 7 ax Po 9 | ¥ (22)
[c_ ¥ EE]
Wave Equation
Substituting Eq. (22) and the similar y form

of the momentum equation into the modified form of
the continuity Eq. (12) ylelds

a | 1 apf a 1 #| ¢ apl 0
ax - =
Po , 2%\ | ¥|(Po, o) ¥ ol at?
'4 Ziw (4 Ciwy
(23)
Assuming, the pressure perturbation P to be
harmonic in time,
P(X,¥,t) = p(x,y) et
Eq. (23) becomes
|1 __ dpi, 3 ap
ax: f_q' 10 Ix _0_ 1_01 ay
4 CH fw
2
+ —‘95— =0 (24)
Pole
For simplicity, let
(o]
i} X
s (25)
P g
.2 _ ]
& 7 1 o (26)
w4 (27)
Pole
Thus, the wave equation becomes
a [1_@p 3 {1 ap 2
ax |:':X ax]"’ ay[cy ay]+vmp=0 (28)

Equation (28) represents the governing wave equation
to be solved by finite element theory.

For later use in applying the finite element
theory, it is convenient to express Eq. (28) in
vector form,

v-{E-Vp}+w2p=o (29)
where the property tensor € 1s represented by
L 0
€
- X
E = (30)
0 =
y

and the vector product of the tensor E and a
vector vp follows the common definition
(Eq. A.4-19, Ref.6)

Uniform Duct Analytical Solutions

The analytical solutions of Eq. (28) for wave
propagation in a uniform hard wall duct having an
anechoic entrance and exit will be employed to give
the termination boundary condition for the finite
element region. The analytical solution for pres-
sure waves traveling between parallel hard plates
where the boundary condition is

P _ - =
ay © 0 at y =0 and y = ba (31)
is given as (see for example Ref. 7, p. 504)
Nm -1k X
p.(x,y) = Z A*cos (UI_;_LH y)e xn
a n ba
n=1
Nm
+ik_ x
. Z A cos<m-;—1)l y)e XN (32)
a
n=1
For the e’ time dependance used here, the
-1k x
A;e xn term represents a wave propagating
ik, x
xn

in the positive x direction while the A;e

represents a wave moving in the negative x
direction.

The axial wave number ky, 1in Eq. (23) is
2
_ (n - 1w (n - Vr
Kxn = K 1'( b.K bk <! (3%
a a
2

= -1k .(ﬂ—_])_’.> _‘l] .(u)_![>] 34
Kxn ( b,k b,k (34)
kK = walue = % (35)

The modal expression represented by Eq. (32)

has been truncated to a total of Ny modes of the
infinite number possible. Thus, a total of Ny
unknown modal amplitudes Ay, Az, -- Ajp have

been introduced. The A* terms will be assumed as
known. Ny constraint equations will be required

to determine each of these unknown reflection coef-
ficients. The equations used to define these coef-
ficients will be introduced in the following section
on boundary conditions.

A similar solution exists at the exit, except
only positive going waves are considered




Nm -k x
PLX,¥) = j{: B, cos (‘IL:Bllﬁ ;)e N (36)
b
n=1

where kyn 1in Eq. (36) 1s based on characteristic
duct height of exit by.

Boundary Conditions

A variety of boundary conditions will be used
in the finite element solution of Eq. (28) for the
model problem which is displayed in schematic form
in Fig. 4. Etach of the required conditions will now
be briefly discussed.

Input Condition

The analysis assumes a given number Ny of
propagating A} modes (see Eq. (32)). These modes
effectively set the level of the scalar pressure
field in the finite element region and can be viewed
as the equivalent Dirichlet boundary conditions
required for elliptic boundary value problems as
defined by Eq. (28).

Pressure Continuity at Inlet and Qutlet

In general, the scalar pressure field 1s con-
tinuous across an interface except where sources
are present. Thus, the boundary condition at the
interface between the entrance duct and the finite
element region requires

P =P (x=0; 0<y<b,) (31

where ps; 1s the modal representation of the
scalar pressure field in the apalytical inlet
region given by £q. (32) and p represents the
finite element approximation for pressure at the
interface. The hat over p 1implies an approximate
finite element numerical solution to the true
solution.

At the inlet interface, shown by the dashed
1ine in Fig. 4, the scalar pressure p, 1in the ana-
Tytical region given by Eq. (32) must match the pres-
sure field defined by the finite element modal points
along the boundary interface. A weighted residual
approach was used herein with the weighting function
equal to the eigen functions.

b
a
J‘ [P, (¥) - P(Y)) c05<-gﬁ-:51111;)dy = 0
(V] a x=0
(38)
(Np equations m = 1,2,3, - - - Np)

Equation (38) represents Ny separate equations;

one for each coefficient defined in Eq. (32). The
symbol m has been introduced for the mode number
equation to make it distinct from the multiple n

mode number that make up the P, and P, analyt-
ical functions.

At the exit,

fbb[pu-”()]cos m - Dy )4 0
A b y p(y bb y x<L =

(39)

Velocity Continuity

In addition to pressure continuity, the axial
acoustic velocity must also be continuous across the
interface to the finite element region.

.

u_. =u (x =0;
a
Again, ua 1s the modal representation of the
scalar axial velocity field in the analytical solu-
tion and U represents the approximate finite ele-
ment solution. Using the momentum equations
(Eq. (21)) to express the axial velocity in term of
the pressure field yields

0<y<b) (40)

_a _1 23p
— = (41)
Pa ax €y X

where again an etlot  time dependance has been
assumed. The weak form of the finite element solu-
tion will be employed in the solution of this prob-
lem. 1In this form, a contour integral term will be
developed which will contain a natural boundary con-
dition of the form 9Up » n where n represents the
unit outward normal. Equation (41) can now be
generalized to

- _ —€y apa
Vp * n = —;; X (inlet) (42)
and at the exit
. _ +cx '] b
Wp e n = ;;— Y (exit) (43)

In general, the gradient of the pressure field is
continuous except where there is a step change in
density. The sign change in Eqs. (42) and (43)
comes directly from the directional change of the
unit outward normal.

Hard Wall Boundary Condition

At the hard walls shown in Fig. 4, the trans-
verse acoustic velocity is zero. Again, using the
momentum equations to relate the acoustic velocity
to the pressure fields requires

Woen=0 (48)
FINITE ELEMENT THEORY

The finite element formulation of the inhomog-
eneous wave equation is now generated by using the
weighted residual approach with the Galerkin approx-
imation to obtain an integral form of the variable
property wave equation over the whole (global)
domain.

The continuous domain D 1is first divided into
a number of discrete areas as shown in Fig. 2. The
particular pattern chosen has been found to give
accurate results for a minimum number of elements.8

In the classical weighted residual manner, the
pressure field 1s curve fitted in terms of all the
unknown modal values p4(xy,yy). The finite element
aspects of converting Eq. (28) and the boundary con-
ditions into an appropriate set of global difference
equations can be found in text books (e.g., Ref. 9)
as well as Ref. 10 and for conciseness will not be
presented herein. 1In Ref. 10, an exact finite ele-
ment analog of Eq. (28) for electromagnatic propaga-




tion has been solved by Galerkin finite element
theory with linear elements.

Experimental Apparatus and Procedure

A test apparatus was constructed to verify the
numerical theories for a tunnel having a fibrous
absorbing wall and no mean flow. The general acous-
tic duct system described in Ref. 11 was modified
into the simple no-flow apparatus as shown schemat-
ically in Fig. 3. The system was adapted to simu-
late plane wave propagation in an infinite duct.

The following paragraphs describe the acoustic sys-
tem including components and general operation.

Source

Sound was generated by a 120 W, 300 Hz to 6 kHz
driver. In the experiment reported herein, a random
noise generator provided a signal to the amplifier
which in turn powers the acoustic driver. The duct
temperature was at 28 °C. Since the first nonplane
mode begins propagating at a frequency of 1701 Hz,
the choice of 1560 Hz for the data frequency guaran-
tees that only plane waves will propagate in the
straight portion of the duct far from the fibrous
absorption area.

Test Section

The sound travels through a 10 by 3.81 cm rec-
tangular test section. This 1.4 m long section
consists of 16 flat detachable plates (eight on top
and eight on bottom). The fibrous absorbing test
piece, to be described shortly, was inserted in
place of the bottom flat piece at location five.

An exponential horn was also attached to the down-
stream end of the test section. For these experi-
ments, the horn was fitted with an acoustic foam
wedge to absorb the incident sound to approximate
an anechoic termination. This anechoic termination
simulates the infinitely lTong exit duct assumed in
the analysis.

Fibrous Test Plece

The fiber test plece was constructed from epoxy
and metal. A 4.6 cm deep by 14.36 cm long and
9.2 cm wide cavity was filled with Kevlar fibers
with a overall density of 0.00792 g/cc, a mean fiber
diameter of 0.61254 mm and with an effective poros-
ity ¢ of 0.9945. A four mesh metal screen covered
the face as well as compressing the Kelvar in the
cavity.

Microphone Installation

Two 0.64 cm (1/4 in.) diameter condenser micro-
phones were used to determine the acoustic field.
The microphone designated (A) was used to monitor
the source strength of the signal, while microphone
(B) was used to determine the pressure and phase
angle along the flat surface above the fibrous
absorption test piece. The output of each micro-
phone was analyzed to determine the r.m.s. pressure
at a test frequency of 1560 Hz. The flat microphone
test holder plate is shown in Fig. 4 along with the
fibrous absorption piece mounted in the duct. Three
microphone holder plates were mounted above the
fibrous absorption test piece at locations 4, 5,
and 6 shown in Fig. 3. This aluminum microphone
plate was fabricated with 0.64 cm (1/4 in.) diameter
holes which allowed one microphone (B) to be tra-

versed in the axial direction in increments of
0.953 cm (3/8 in.). The microphone holder piates
were fabricated with an insulator in each hole, so
that the microphones were electrically insulated
from the test plate. During a measurement, the
microphone's membrane was positioned flux with the
surface of the test plate (protective shields were
removed) .

The response of these microphones was flat to
25 kHz. a standard acoustic source was used to
check the system amplification. The measured (nor-
malized) r.m.s. acoustic pressures are shown in
Table 1. The lengths are normalized to the duct
height (3.81 cm) and the rms acoustic pressures are
normalized by microphone (A). The fiberous material
begins at x/3.81 of 4.47 and ends at 8.167.

Discussion of Results

For theory and code validation, the finite
element solution is first applied to a case where
an exact analytical solution exists. Next, the
experimental results are compared to theoretical
predictions.

Reflection and Transmission With Normal Incidence

The first case considers a step change in mate-
rial density from a non-dimensional value of 1 to a
value of 4 at an axial position of x equal to 0.25
inside the finite element grid. 1In this case, the
porosity s unity, and the viscous loss coefficients
oy and oy are assumed to be zero so that ey
and ¢ ¥ake on the real values of 1 and 4, respec-
tively. The u parameter was assumed to be 1 and
the dimensionless incident frequency was assumed to
be 2w.

As shown in Fig. 5, the finite element and
exact analytical theories (Ref. 12, p. 83) are in
excellent agreement for the rms pressure. The
reflections from the interface between the two den-
sity changes are clearly represented by the standing
wave pattern ahead of the interface. Observe that
the magnitude of the pressure increases inside the
material.

Experimental Axial Pressure Profile - Hersh
Properties

The normalized rms pressure from Table 1 are
plotted against axial distance in Fig. 6 and com-
pared to the finite element solution of Eq. (28).
The material properties were evaluated using Hersh's
correlation? with

Pr = 0.7 v' = 1.51€-05 m?/sec
vy =1.4 d' =1.25410-5 m
Vp = 1.0 Vp = 0.44 Ty = 1.0

and ¢ = 0.9945

and found to be
ey = 1.0055 -10.0996 (48)
ey = 1.0055 -10.113) (45)
u = 1.0004 -10.0479 (46)

As seen in Fig. 6, the theory and experiment are

in reasonable agreement. The magnitude of the




entrance standing wave is in close agreement
although a slight shift in the pattern is seen.

The standing wave pattern determines the reflected
wave, The fall off of pressure in the central por-
tion of the duct is also handled reasonably well,
However, the pressure rise at the exit is over
estimated although the proper trend is predicted.

The slight standing wave pattern in the exit
duct data is a result of reflections off the absorb-
ing wedge in the test section horn. Since the
theory assumes that there is no reflected energy at
the exit, a downstream standing wave pattern cannot,
of course, arise in analytical predictions. The
absence of reflected energy at the duct exit in the
theory may account for the shift in the predicted
standing wave pattern at the entrance.

It can be shown that the standing wave pattern
in a duct can be written as

=

=1+ R2

P 2Rfcos(2kx + ef)

(47)

~N

al

where R¢ s the magnitude of the termination
reflection coefficient and 6 1s the reflection
coefficient phase angle. The standing wave pattern
has a minimum value when

cos(2kx + 0
m

in = -1

o) (48)

or

2 = -(2n-1) =« - ef (49)

kxm1n
which appiies when the axial coordinate gets more
positive toward the termination. A measurement of
the termination reflection coefficient at 1560 Hz
shows that ¢ = -0.45 «, which results in a shift
of the minima towards more positive values by about
0.67 axial units. The data points agree with the
direction of this shift but the measurements shown
in Fig. & have about a 0.5 axial unit shift compared
to the theory which is only a 0.17 axial unit dif-
ference. This difference is within the accuracy of
the microphone measurements.

Experimental Axial Pressure Profiles - Modified
Hersh Properties

Other observations suggest that Hersh's empir-
ical coefficient o could be underestimating vis-
cous _effects. Using an impedance tube, Dahl and
Rice? reported larger measured absorption than
predicted with the Hersh modal in the 1500 Hz
frequency range. Consequently, to check the sensit-
ivity of the predictions to the viscous loss coef-

ficient o, the imaginary component of ¢ has been
increased to
ex = gy = 1.0055 -10.21335 (50)

As seen in Fig. 7, the theory and experiment are in
better agreement at the exit. The present numerical
theory may offer an attractive theoretical approach
to evaluating viscous loss coefficients in bulk
absorbers.

Concluding Remarks

The finite element model was developed to solve
for the acoustic pressure field in a region that
was nonhomogeneous. The derivations from the gov-

erning equations assumed no mean flow and that the
material properties could vary with position
resulting in a nonhomogeneous variable property two-
dimensional wave equation. This eliminated the
necessity of finding the boundary conditions between
the different materials. Consequently, complex
structure can be easily modeled simply by changing
the property of elements in the calculational
domain.

For a two media region consisting a part air
and part bulk absorber, a model was used to describe
the bulk absorber properties in two directions. An
experiment to verify the numerical theory was con-
ducted in a rectangular duct with no flow and with
absorbing material mounted on one wall. Changes 1in
the sound field, consisting of planar waves, was
measured on the wall opposite the absorbing mate-
rial. As a function of distance along the duct,
fairly good agreement was found in the standing
wave pattern upstream of the absorber and in the
decay of pressure level opposite the absorber.

The numerical formulation is relatively simple
to use and appears to give accurate modeling of
experimental data. The theory may be a useful tool
in the evaluation of viscous loss coefficients in
bulk materials.
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TABLE 1
Position x/3.81 | pg/pp, Position | x/3.81 | pp/pa,
rms rms
1 0.00 |1.0 25 6.417 | 0.1793
2 26 6.667 .0990
3 .5 1.105 27 6.917 .0723
4 .75 11.078 28 7.167 .1304
5 1.00 .9904 29 7.417 .1983
6 1.25 .8655 30 7.667 .2541
7 1.5 .7066 31 7.917 .3009
8 1.75 L5791 32 8.167 .3383
9 2.00 .5358 33 8.833 .3944
10 2.25 .6013 34 9.083 .3981
1 2.50 .7428 35 9.333 .3929
12 2.75 .8871 36 9.583 .3790
13 3.00 |[1.004 317 9.833 .3582
14 3.25 (1.077 38 10.083 .3323
15 3.50 |[1.088 39 10.333 L3147
16 3.75 11.049 40 10.583 .3078
17 4.417 .7495 41 10.833 .3155
18 4.667 .6395 42 11.083 .3332
19 4.917 .5510 43 11.333 .3563
20 5.167 .4882 44 11.583 .3817
21 5.411 .4386 45 11.833 .3934
22 5.667 .3900 46 12.083 .3960
23 5.917 .3296 47 12.333 .3894
24 6.167 .2599 48 12.583 .3738
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FIGURE 2. - TWO DIMENSIONAL DUCT FINITE ELEMENT MODEL.
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